Precalculus

7-05 Rotated Conics

- Nonrotated conics form $Ax^2 + Cy^2 + Dx + Ey + F = 0$.
 - _____horizontal or vertical.
- Rotated conics form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$.
 - _____horizontal or vertical
 - *Bxy* term prevents ______the _____to write the conics in standard form.

Classify Rotated Conics

- If the conic is in the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, then
 - $\circ \quad \text{If } B^2 4AC < 0 \rightarrow ____$
 - $\circ \quad \text{If } B^2 4AC = 0 \rightarrow ____$
 - $\circ \quad \text{If } B^2 4AC > 0 \rightarrow ___$

Write Rotated Conics in Standard Form

Given a conic written as $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

1. Find the angle of rotation using

$$\cot 2\theta = \frac{A-C}{B}$$

where $0 < \theta < \frac{\pi}{2}$

- 2. Find sin θ and cos θ .
 - If θ is a special angle, evaluate sin θ and cos θ directly.
 - If θ is not a special angle,
 - a. Find $\cot 2\theta$.
 - b. Reciprocal to find **tan 2***θ*.
 - c. Use $1 + \tan^2 u = \sec^2 u$ to find sec 2θ . (If $\tan 2\theta < 0$, then sec $2\theta < 0$.)
 - d. Reciprocal to find **cos** 2*θ*.
 - e. Use the half-angle formulas to find sin θ and cos θ .

$$\sin \theta = \sqrt{\frac{1-\cos 2\theta}{2}}$$
 and $\cos \theta = \sqrt{\frac{1+\cos 2\theta}{2}}$

3. Find the substitutions for *x* and *y* using

$$x = x' \cos \theta - y' \sin \theta$$
$$y = x' \sin \theta + y' \cos \theta$$

4. Make the substitutions and arrange the terms into standard form.

Graph a Rotated Conic

- 1. Draw the rotated _____
- 2. Using the rotated axes, sketch the _____.

Write $xy = \frac{1}{2}$ in standard form

Sketch the graph of $x^2 + \sqrt{3}xy$	$+2y^2-2=0.$
--	--------------

			•			
_						_
			,			

Name: ____

Precalculus 7-05

Sketch the graph of $3x^{2} + 2\sqrt{3}xy + y^{2} + 2x - 2\sqrt{3}y = 0$.

,						

Precalculus 7-05

Classify the graph, use the quadratic formula to solve for y, and use a graphing utility to graph the equation. $3x^2 - 6xy + 3y^2 + 2y = 0$

				•			
,							-
			,	,			