Precalculus

7-05 Rotated Conics

- Nonrotated conics form $A x^{2}+C y^{2}+D x+E y+F=0$.
\bigcirc \qquad horizontal or vertical.
- Rotated conics form $A x^{2}+B x y+C y^{2}+D x+E y+F=0$.
o \qquad horizontal or vertical
- Bxy term prevents \qquad the \qquad to write the conics in standard form.

Classify Rotated Conics

- If the conic is in the form $A x^{2}+B x y+C y^{2}+D x+E y+F=0$, then
- If $B^{2}-4 A C<0 \rightarrow$ \qquad
- If $B^{2}-4 A C=0 \rightarrow$ \qquad
- If $B^{2}-4 A C>0 \rightarrow$ \qquad

Write Rotated Conics in Standard Form

Given a conic written as $A x^{2}+B x y+C y^{2}+D x+E y+F=0$

1. Find the angle of rotation using

$$
\cot 2 \theta=\frac{A-C}{B}
$$

where $0<\theta<\frac{\pi}{2}$
2. Find $\sin \theta$ and $\cos \theta$.

- If θ is a special angle, evaluate $\sin \theta$ and $\cos \theta$ directly.
- If θ is not a special angle,
a. Find $\cot 2 \theta$.
b. Reciprocal to find $\boldsymbol{\operatorname { t a n }} \mathbf{2 \theta}$.
c. Use $\mathbf{1}+\boldsymbol{\operatorname { t a n }}^{2} \boldsymbol{u}=\boldsymbol{\operatorname { s e c }}^{2} \boldsymbol{u}$ to find $\sec 2 \theta$. (If $\tan 2 \theta<0$, then $\sec 2 \theta<0$.)
d. Reciprocal to find $\boldsymbol{\operatorname { c o s }} \mathbf{2 \theta}$.
e. Use the half-angle formulas to find $\sin \theta$ and $\cos \theta$.

$$
\sin \theta=\sqrt{\frac{1-\cos 2 \theta}{2}} \text { and } \cos \theta=\sqrt{\frac{1+\cos 2 \theta}{2}}
$$

3. Find the substitutions for x and y using

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{aligned}
$$

4. Make the substitutions and arrange the terms into standard form.

Graph a Rotated Conic

1. Draw the rotated \qquad .
2. Using the rotated axes, sketch the \qquad

Write $x y=\frac{1}{2}$ in standard form

Sketch the graph of $x^{2}+\sqrt{3} x y+2 y^{2}-2=0$.

Precalculus 7-05
Name: \qquad
Sketch the graph of $3 x^{2}+2 \sqrt{3} x y+y^{2}+2 x-2 \sqrt{3} y=0$.

Classify the graph, use the quadratic formula to solve for y, and use a graphing utility to graph the equation.
$3 x^{2}-6 x y+3 y^{2}+2 y=0$

